The effects of deferoxamine on inhibition for microglia activation and protection of secondary nerve injury after intracerebral hemorrhage in rats.
نویسندگان
چکیده
To investigate the effects of the iron chelatordeferoxamine (DFA) on inhibition formicroglia activation and protection of secondary nerve injury after intracerebral hemorrhage (ICH) in rats. The rats were randomly divided into sham operation group, ICH group and DFA treatment group. The collagenase was used to prepare ICH model of basal gangliain rats and 1h after the beginning of the operation, the intraperitoneal injection with DFA was arranged every 12 h and for a total of 7d. The changes of Iron ion concentration were measured at perihematomaat different time points after the medicine was given. OX42 immunohistochemical staining observed microglia change at perihematoma. ELISA method determined the changes of IL-1β and TNF-β content of brain tissue. Neurological deficit scores and Nissl staining were used to observe the situation of neurological function and neuronal loss of rats after DFA treatment. 1 d After the start of ICH, the concentration of iron in perihematoma was significantly higher than that of animalsin sham-operated group and could sustain for28 d. At the same time, the quantities of local microglial cells were significantly increased. After applying DFA, the concentration of iron ions in the brain tissue around the hematoma was significantly reduced, so did the number of microglial cells and activation of neurotoxic cytokines (IL-1β and TNF-α content) secreted by microglial cells was significantly reduced. At the same time, the loss of neurons in the tissue around of the hematoma was significantly reduced and neurological deficit scores were significantly reduced. Iron ions which were sustainedly released by hematoma after ICH can activate the local microglia and cause secondary brain injury. DFA curb excessive activation of microglia and reduce neuronal death of ICH by means of clearinf away iron ions of brain tissue surrounding the hematoma, thus improve secondary neurological dysfunction.
منابع مشابه
P84: Effect of Insulin-Like Growth Factor 2 (IGF2) as a Microglia-Derived Anti-Iinflammatory Ccytokine on Improving Memory Impairment Following Hippocampal Intracerebral Hemorrhage in Rat
Insulin-like growth factor 2 (IGF2) as a microglia-derived anti-inflammatory cytokine has a pivotal activity in memory consolidation. However, there is limited evidence on brain cell-originated IGF2 expression, regulation and function in pathological condition and neuro-inflammation. Hence, the present study was conducted to investigate the effect of IGF2 on improving the memory impairment in a...
متن کاملHemin Induces the Activation of NLRP3 Inflammasome in N9 Microglial Cells
Background: Hemin is an important sterile component that induces a neuroinflammatory response after intracerebral hemorrhage, in which NLRP3 inflammasome activation has also proved to be involved. Although microglial activation acts as a key contributor in the neuroinflammatory response, the relationship between hemin and NLRP3 in microglia remains poorly understood. Objective: To investigate w...
متن کاملColony stimulating factor 1 receptor inhibition eliminates microglia and attenuates brain injury after intracerebral hemorrhage
Microglia are the first responders to intracerebral hemorrhage, but their precise role in intracerebral hemorrhage remains to be defined. Microglia are the only type of brain cells expressing the colony-stimulating factor 1 receptor, a key regulator for myeloid lineage cells. Here, we determined the effects of a colony-stimulating factor 1 receptor inhibitor (PLX3397) on microglia and the outco...
متن کاملP 147: Role of Sparstolonin B in Intracerebral Hemorrhage-Induced Inflammatory Brain Injury: Blocking the Formation of TLR2/TLR4 Heterodimer
Intra-cerebral hemorrhage (ICH) is a particularly severe type of stroke accounting for 10–15 % of all strokes and is associated with a mortality rate of 30–50%. Neuroinflammation contributes to ICH-induced secondary brain injury and understanding the mechanisms causing neuroinflammation can be helpful to find new treatments of ICH. Recent studies demonstrated that toll like receptor...
متن کاملCyclooxygense-1 inhibition delays hypersensitivity to nerve injury
Despite the important role of both cyclooxygenase (COX) isoforms (i.e. COX-1 and COX-2) in maintenance of hypersensitivity following peripheral nerve injury, their role in the development of neuropathic pain is not clear. The present study was undertaken to determine the effect of COX inhibitors to address the potential role of COX isozymes in the development of neuropathic pain in rats after c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Pakistan journal of pharmaceutical sciences
دوره 29 3 Suppl شماره
صفحات -
تاریخ انتشار 2016